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Abstract
We consider the Schrödinger operator in R

n, n � 3, with the electric potential
V and the magnetic potential A being periodic functions (with a common period
lattice) and prove absolute continuity of the spectrum of the operator in question
under some conditions which, in particular, are satisfied if V ∈ L

n/2
loc (Rn) and

A ∈ H
q

loc(R
n; R

n), q > (n − 1)/2.

PACS numbers: 02.30.Jr, 02.30.Tb, 71.20.−b
Mathematics Subject Classification: 35P05

The paper concerns the problem of absolute continuity of the spectrum of a periodic
magnetic Schrödinger operator. Periodic elliptic differential operators arise in many areas
of mathematical physics. The stationary Schrödinger operator

−� + V (x), x ∈ R
n, (1)

with a periodic electric potential V plays an important role in the quantum solid state theory
(see, e.g., [1, 2]). We should also mention the periodic Maxwell operator (see [3–5]), the
generalized periodic magnetic Schrödinger operator

n∑
j,l=1

(
−i

∂

∂xj

− Aj

)
Gjl

(
−i

∂

∂xl

− Al

)
+ V, x ∈ R

n, (2)

with the electric potential V and the magnetic potential A, where {Gjl} is a positive definite
matrix function (see [6]), and the periodic Dirac operator (see, e.g., [7–9] and also [10, 11]).
The operator (2) for A ≡ 0 and V ≡ 0 is also used in studying periodic acoustic media.

It is well known that the spectra of periodic elliptic operators have a band-gap structure.
In [12], for the periodic electric potential V ∈ L2

loc(R
3), Thomas proved absolute continuity of

the spectrum of operator (1) on L2(R3). In particular, this means that the spectrum of operator
(1) does not contain any eigenvalues, hence the spectral bands do not collapse to a point. In
[13, 14], it was proved that the singular continuous part is missing from the spectra of periodic
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elliptic operators. Therefore absolute continuity of the spectra of these operators is equivalent
to the absence of eigenvalues.

In [15], Filonov presented examples of periodic operators
n∑

j,l=1

(
−i

∂

∂xj

)
Gjl

(
−i

∂

∂xl

)
in R

n, n � 3, whose spectra have eigenvalues (of infinite multiplicity), where {Gjl} are some
positive definite periodic matrix functions which belong to all Hölder classes Cα, α < 1.

Since eigenfunctions corresponding to eigenvalues are considered as bound states and
ones that correspond to the absolutely continuous spectrum are interpreted as propagating
modes, the absolute continuity of the spectrum is a physically important property. In the
last decade many papers were devoted to the problem of absolute continuity of the spectra of
periodic elliptic operators. The papers [6, 16–18] contain a survey of relevant results.

In this paper we consider the periodic Schrödinger operator

Ĥ (A, V ) =
n∑

j=1

(
−i

∂

∂xj

− Aj

)2

+ V (3)

acting on L2(Rn), n � 2, where the electric potential V : R
n → R and the magnetic potential

A : R
n → R

n are periodic functions with a common period lattice � ⊂ R
n.

The coordinates in R
n are taken relative to an orthogonal basis {Ej }. Let K be the

fundamental domain of the lattice �, {Ej } the basis in the lattice �,�∗ the reciprocal lattice
with the basis vectors E∗

j satisfying the conditions (E∗
j , El) = δjl (where δjl is the Kronecker

delta).
The scalar products and the norms on the spaces C

M,L2(Rn; C
M) and L2(K; C

M),
where M ∈ N, are introduced in the usual way (as a rule, omitting the notation for the
corresponding space). We suppose that the scalar products are linear in the second argument.
Let Hq(Rn; C

M), q � 0, be the Sobolev class, H̃ q(K; C
M) the set of functions φ : K → C

M

whose �-periodic extensions belong to H
q

loc(R
n; C

M); H̃ q(K)
.= H̃ q(K; C) . In what follows,

the functions defined on the fundamental domain K will be also identified with their �-periodic
extensions to R

n. We let

φN = v−1(K)

∫
K

φ(x) e−2π i(N,x) dx, N ∈ �∗,

denote the Fourier coefficients of the functions φ ∈ L1(K; C
M), v(·) is the Lebesgue measure

on R
n.
Let ‖·‖p be the norm on the space Lp(K), p � 1. Denote by L

p
w(K) the space of

measurable functions W : K → C which satisfy the condition

‖W‖p,w
.= sup

t>0
t (v({x ∈ K : |W(x)| > t}))1/p < +∞.

For W ∈ L
p
w(K), we also write

‖W‖(∞)
p,w

.= sup
t→+∞

t (v({x ∈ K : |W(x)| > t}))1/p;
L

p

w,0(K) = {
W ∈ L

p
w(K) : ‖W‖(∞)

p,w = 0
}
.

In the following, we assume that the form (φ, V φ), φ ∈ H 1(Rn), has a bound less than
1 relative to the form

∑
j

∥∥ ∂φ

∂xj

∥∥2
, φ ∈ H 1(Rn) (in particular, it is true if V ∈ L

n/2
w (K) and

‖V ‖(∞)
n/2,w is sufficiently small) and for the magnetic potential A the estimate

‖|A|φ‖ � ε

⎛⎝ n∑
j=1

∥∥∥∥ ∂φ

∂xj

∥∥∥∥2
⎞⎠1/2

+ Cε‖φ‖, φ ∈ H 1(Rn), (4)

2
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holds for any ε > 0, where Cε = Cε(n;A) � 0. Under these conditions the quadratic form

W(A,V ;φ, φ) =
n∑

j=1

∥∥∥∥(
−i

∂

∂xj

− Aj

)
φ

∥∥∥∥2

+ (φ, V φ), φ ∈ H 1(Rn),

with the domain Q(W) = H 1(Rn) ⊂ L2(Rn) is closed and semi-bounded from below.
Therefore the form W generates the self-adjoint operator (3) with some domain D(Ĥ (A, V )) ⊂
H 1(Rn).

The problem of absolute continuity of the spectra of two-dimensional periodic Schrödinger
operators (2) and (3) has been thoroughly studied (see [19–30]) and optimal conditions
on the electric potential V and the magnetic potential A have already been obtained. In
particular, for the two-dimensional operator (3), absolute continuity of the spectrum was
proved if the form (φ, V φ) has a zero bound relative to the form

∑
j

∥∥ ∂φ

∂xj

∥∥2
, φ ∈ H 1(R2),

and for the magnetic potential A, estimate (4) holds for all ε > 0 (see [28] and also
[30]). In [2], the results of the paper [12] were generalized on n-dimensional Schrödinger
operators (1) with the periodic potentials V for which V ∈ L2

loc(R
n), n = 2, 3, and∑

N∈�∗ |VN |q < +∞, 1 � q < (n − 1)/(n − 2), n � 4. For n � 3, absolute continuity
of the spectrum of the Schrödinger operator (3) was established by Sobolev (see [31]) for the
periodic potentials V ∈ Lp(K), p > n − 1, and A ∈ C2n+3(Rn; R

n). These conditions on the
potentials V and A (for n � 3) were relaxed in subsequent papers. In [6], it was supposed
that V ∈ L

n/2
w,0(K) for n = 3, 4 and V ∈ Ln−2

w,0 (K) for n � 5. In [17, 32], the constraint on the
magnetic potential A was relaxed up to A ∈ H

q

loc(R
n; R

n), 2q > 3n − 2. In [33, 34], for the
magnetic potential A ∈ C1(Rn; R

n) it was assumed that either A ∈ H
q

loc(R
n; R

n), 2q > n−2,
or

∑
N∈�∗ ‖AN‖C

n < +∞, and V ∈ L
p
w(K), ‖V ‖(∞)

p,w � C ′, where p = n/2 for n = 3, 4, 5, 6
and p = n − 3 for n � 7, C ′ = C ′(n,�;A) > 0. The absolute continuity of the spectrum
of the Schrödinger operator with the periodic potential V ∈ L

n/2
w (K) for which ‖V ‖(∞)

n/2,w is
sufficiently small was proved in [35] for all n � 3 (and for A ≡ 0). The periodic electric
potentials V from the Kato class and from the Morrey class were also considered in [24, 36],
respectively. For n � 3, the periodic Schrödinger operator (3) and its generalization (2) were
also considered in [37–41]. In [24, 35, 36], for n � 3 and A ≡ 0, the optimal conditions on
the periodic electric potential V were approached in terms of standard functional spaces (but
it is believed that the known conditions on the periodic magnetic potential A are not optimal
for n � 3). In theorem 0.1 we relax conditions on the periodic potentials V and A. If the
periodic Schrödinger operator (3) has the period lattice � = Z

n, n � 3, and is invariant under
the substitution x1 → −x1, then its spectrum is absolutely continuous under the conditions
A ∈ L

q

loc(R
n; R

n), q > n and V ∈ L
n/2
loc (Rn) (see [42]).

For the vectors x ∈ R
n\{0} we shall use the notation

Sn−2(x) = {̃e ∈ Sn−1 : (̃e, x) = 0},
where Sn−1 = {y ∈ R

n : |y| = 1}.
Let B(R) be the collection of Borel subsets O ⊆ R,M the set of even signed Borel

measures μ : B(R) → R,

‖μ‖ = sup
O∈B(R)

(|μ(O)| + |μ(R\O)|) < +∞, μ ∈ M.

Denote by Mh, h > 0, the set of measures μ ∈ M such that∫
R

eipt dμ(t) = 1

for all p ∈ (−h, h). In particular, the set Mh contains the Dirac measure δ(·).
3
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The following theorem is the main result of this paper.

Theorem 0.1. Let n � 3 and let A : R
n → R

n be a periodic function with a period lattice
� ⊂ R

n. Fix a vector γ ∈ �\{0}. Suppose that the magnetic potential A ∈ L2(K; R
n)

satisfies the following two conditions:

(A1) the map

R
n � x → {[0, 1] � ξ → A(x − ξγ )} ∈ L2([0, 1]; R

n)

is continuous;
(A2) there is a measure μ ∈ Mh, h > 0, such that

θ(�, γ, h, μ;A)
.= |γ |

π
max
x∈R

n
max

ẽ∈Sn−2(γ )

∣∣∣∣A0 −
∫

R

dμ(t)

∫ 1

0
A(x − ξγ − t̃ e) dξ

∣∣∣∣ < 1, (5)

where A0 = v−1(K)
∫
K

A(x) dx (and | · | denotes the Euclidean norm on R
n).

Then there exists a number C = C(n,�;A) > 0 such that for all electric potentials
V = V1 + V2, where V1 ∈ L

n/2
w (K; R) and V2 ∈ L1(K; R) are �-periodic functions for which

‖V1‖(∞)
n/2,w � C (6)

and

ess sup
x∈R

n

∫ 1

0
|V2(x − ξγ )| dξ < +∞, (7)

the spectrum of the periodic Schrödinger operator (3) is absolutely continuous.

Theorem 0.1 is proved in section 1.

Remark 1. Under the conditions of theorem 0.1, the number C = C(n,�;A) in inequality
(6) is chosen sufficiently small so that the form (φ, V1φ) has a bound less than 1 relative to the
form

∑
j

∥∥ ∂φ

∂xj

∥∥2
, φ ∈ H 1(Rn). Furthermore, from (7) it follows that the form (φ, V2φ) has a

zero bound relative to the form
∑

j

∥∥ ∂φ

∂xj

∥∥2
, and the condition (A1) implies that inequality (4)

holds for all ε > 0. Hence the periodic Schrödinger operator (3) is generated by the quadratic
form W(A,V ;φ, φ), φ ∈ H 1(Rn), which is closed and semi-bounded from below.

Remark 2. Instead of condition (6) one can admit the weakened condition

lim
r→+0

sup
x∈R

n

sup
t→+∞

t (v({y ∈ Br(x) : |V1(y)| > t}))2/n � C

(with another constant C = C(n,�;A) > 0), where Br(x) = {y ∈ R
n : |x − y| � r} is a

closed ball of radius r > 0 centered at x ∈ R
n.

Remark 3. For the periodic magnetic potential A the condition (A2) is fulfilled (under
an appropriate choice of the vector γ ∈ �\{0} and the measure μ ∈ Mh, h > 0) if
A ∈ H̃ q(K; R

n), 2q > n − 2 (see [11, 33]). If 2q > n − 1, then the condition (A1) is
fulfilled as well. For the choice of the Dirac measure μ = δ in the condition (A2), inequality
(5) is valid whenever∑

N∈�∗\{0}:(N,γ )=0

‖AN‖C
n <

π

|γ | . (8)

Moreover, inequality (8) holds under an appropriate choice of the vector γ ∈ �\{0} if∑
N∈�∗ ‖AN‖C

n < +∞ (see [11, 33]).

4
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The proof of theorem 0.1 follows the method suggested by Thomas in [12]. In this
paper we apply estimates for the periodic electric potential V1 ∈ L

n/2
w (K; R) (see (13) and

theorem 1.2) which are derived as a consequence of the Tomas–Stein inequality for the
restriction of the Fourier transform to the unit sphere (see a survey on such estimates in
[43, 44]). Besides, the estimates are obtained for L2-norms (unlike [35]) so this allows
us to study the Schrödinger operator (3) with the magnetic potential A. For the proof of
theorem 0.1, we also apply assertions for the periodic magnetic Dirac operator (see
theorem 3.1) proved in [45, 46].

The proof of theorem 0.1 is presented in section 1. Theorems 1.2 and 1.3 from section 1
are proved in sections 2 and 3, respectively.

In the paper we use the notation C (with subscripts and superscripts or without them)
for constants which are not necessarily the same at each occurrence but we shall explicitly
indicate on what these constants depend.

1. Proof of theorem 0.1

For k ∈ R
n, e ∈ Sn−1, and  ∈ R, let

W(A; k + ie;ψ, φ) =
n∑

j=1

((
−i

∂

∂xj

− Aj + kj − iej

)
ψ,

(
−i

∂

∂xj

− Aj + kj + iej

)
φ

)
be a sesquilinear form with the domain Q(W(A; k + ie; ., .)) = H̃ 1(K) ⊂ L2(K). Under
the conditions imposed on the potentials A and V , the quadratic form (φ, V φ) has a bound
less than 1 relative to the forms W(0; k;φ, φ), k ∈ R

n, φ ∈ H̃ 1(K). Therefore,

W(A,V ; k + ie;ψ, φ)
.= W(A; k + ie;ψ, φ) + (ψ, V φ), ψ, φ ∈ H̃ 1(K),

is a closed sectorial sesquilinear form generating an m-sectorial operator Ĥ (A; k + ie) + V

(with the domain D(Ĥ (A; k + ie) + V ) ⊂ H̃ 1(K) ⊂ L2(K) independent of the complex
vector k + ie ∈ C

n). If A ∈ C1(Rn; R
n), then

Ĥ (A; k + ie) =
n∑

j=1

(
−i

∂

∂xj

− Aj + kj + iej

)2

and D(Ĥ (A; k + ie)) = H̃ 2(K). The operators Ĥ (A; k) + V (for  = 0) are self-adjoint and
have compact resolvent. This implies that they have a discrete spectrum. For fixed vectors
k ∈ R

n and e ∈ Sn−1, the operators Ĥ (A; k + ζe) + V, ζ ∈ C, form a self-adjoint analytic
family of type (B) (see [47]).

The operator Ĥ (A, V ) is unitarily equivalent to the direct integral∫ ⊕
2πK∗

(Ĥ (A; k) + V )
dk

(2π)nv(K∗)
, (9)

where K∗ is the fundamental domain of the lattice �∗. The unitary equivalence is established
via the Gel’fand transformation (see [6, 35]). Let λj (k), j ∈ N, be the eigenvalues of the
operators Ĥ (A; k) + V arranged in non-decreasing order with the multiplicity. The spectrum
of the operator Ĥ (A;V ) has a band-gap structure and consists of the union of the ranges
{λj (k) : k ∈ 2πK∗} of the band functions λj (k), j ∈ N, which are continuous and piecewise
analytic. The singular spectrum of the operator (3) is empty (see [13, 14] and for an elementary
proof of this fact also see [48, 49]) and if λ ∈ R is an eigenvalue of the operator Ĥ (A, V ), then
the decomposition of the operator Ĥ (A, V ) into the direct integral (9) implies that the number
λ is an eigenvalue of the operators Ĥ (A; k)+V for a positive measure set of vectors k ∈ 2πK∗

5
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(i.e. v({k ∈ 2πK∗ : λj (k) = λ}) > 0 for some j ∈ N). Therefore, by analytic Fredholm
theorem, it follows that the number λ is an eigenvalue of the operators Ĥ (A; k + ie) + V

for all k + ie ∈ C
n (see [13, 18]). Hence, to prove absolute continuity of the spectrum of

operator (3), it suffices for any λ ∈ R to find vectors k ∈ R
n, e ∈ Sn−1 and a number  � 0

such that the number λ is not an eigenvalue of the operator Ĥ (A; k + ie) + V . Since the
operators Ĥ (A; k + ie) + V are generated by the forms W(A,V ; k + ie;ψ, φ), ψ, φ ∈
H̃ 1(K) (i.e.(ψ, (Ĥ (A; k + ie) + V )φ) = W(A,V ; k + ie;ψ, φ) for all ψ ∈ H̃ 1(K)

and φ ∈ D(Ĥ (A; k + ie) + V ) ⊂ H̃ 1(K)), we conclude that theorem 0.1 follows from
theorem 1.1 in which for a given vector γ ∈ �\{0} (in particular) it is proved that for any
λ ∈ R the operators Ĥ (A; k + i|γ |−1γ ) + V − λ are invertible for all vectors k ∈ R

n with
|(k, γ )| = π , and all sufficiently large numbers  > 0 (dependent on λ ∈ R).

Fix a vector γ ∈ �\{0}; e = |γ |−1γ ∈ Sn−1. For vectors x ∈ R
n we write

x‖
.= (x, e), x⊥

.= x − (x, e)e. For all N ∈ �∗, k ∈ R
n, and  � 0, introduce the notation

G±
N = G±

N(k + ie)
.= (|k‖ + 2πN‖|2 + ( ± |k⊥ + 2πN⊥|)2)1/2.

If |(k, γ )| = π , then G−
N � π |γ |−1,G+

N � , and G+
NG−

N � 2π |γ |−1. The equality

Ĥ (0; k + ie)φ =
∑

N∈�∗
(k + 2πN + ie)2φN e2π i(N,x), φ ∈ H̃ 2(K),

holds, where |(k + 2πN + ie)2| = G+
NG−

N . Denote by L̂ = L̂(k + ie) the nonnegative
operator on L2(K)

L̂φ =
∑

N∈�∗
G+

NG−
NφN e2π i(N,x), φ ∈ D(L̂) = H̃ 2(K).

For the operator L̂1/2, one has D(L̂1/2) = H̃ 1(K).

Theorem 1.1. Let n � 3. Suppose the periodic magnetic potential A : R
n → R

n with the
period lattice � ⊂ R

n satisfies the conditions (A1) and (A2) of theorem 0.1 and the function
V2 ∈ L1(K; R) obeys condition (7) for the fixed vector γ ∈ �\{0}. Then there exist numbers
C = C(n,�;A) > 0 and C ′ = C ′(n,�;A) > 0 such that for any function V1 ∈ L

n/2
w (K; R)

with ‖V1‖(∞)
n/2,w � C, and any λ ∈ R there is a number 0 > 0 such that for all  � 0, all

vectors k ∈ R
n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K) the inequality

sup
ψ∈H̃ 1(K):‖L̂1/2(k+ie)ψ‖�1

|W(A,V1 + V2 − λ; k + ie;ψ, φ)| � C ′‖L̂1/2(k + ie)φ‖

holds.

Theorem 1.1 is a consequence of theorems 1.2 and 1.3 and lemma 1.1.

Theorem 1.2. Let n � 3. Suppose a �-periodic function W : R
n → R belongs to the space

Ln
w(K), γ ∈ �\{0} (and e = |γ |−1γ ). Then there are numbers C̃ = C̃(n) > 0 and 0 > 0

such that for all  � 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K)

the inequality

‖Wφ‖ � C̃‖W‖n,w‖L̂1/2(k + ie)φ‖
is fulfilled.

For �-periodic functions V : R
n → R from the space Lp(K), p = 1, 2, and for the fixed

vector γ ∈ �\{0} we write

‖V‖p,γ = ess sup
x∈R

n

(∫ 1

0
|V(x − ξγ )|p dξ

)1/p

.

6
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Theorem 1.3. Let n � 3, a � 0,� ∈ [0, 1). Suppose the periodic magnetic potential
A : R

n → R
n with the period lattice � ⊂ R

n satisfies the conditions (A1) and (A2) of
theorem 0.1 for the fixed vector γ ∈ �\{0}(e = |γ |−1γ ) and, moreover, ‖|A|‖2,γ � a and
θ(�, γ, h, μ;A) � �. Then there exist numbers C1 = C1(n,�, |γ |, h, ‖μ‖; a,�) > 0 and
0 > 0 such that for all  � 0, all vectors k ∈ R

n with |(k, γ )| = π , and all functions
φ ∈ H̃ 1(K) the estimate

sup
ψ∈H̃ 1(K):‖L̂1/2(k+ie)ψ‖�1

|W(A; k + ie;ψ, φ)| � C1‖L̂1/2(k + ie)φ‖ (10)

holds.

Lemma 1.1. Let n � 2. Suppose a �-periodic function V : R
n → R belongs to the space

L2(K) (and ‖V‖2,γ < +∞, where γ ∈ �\{0};e = |γ |−1γ ). Then for any ε > 0 there is a
constant Cε = Cε(n, |γ |) > 0 such that for all vectors k ∈ R

n and all functions φ ∈ H̃ 1(K)

the inequality

‖Vφ‖ � ‖V‖2,γ

⎛⎝εv1/2(K)

( ∑
N∈�∗

|k‖ + 2πN‖|2‖φN‖2

)1/2

+ Cε‖φ‖
⎞⎠

holds.

Lemma 1.1 immediately follows from simple estimates for functions from the Sobolev
class H 1

loc(R) (see, e.g., [50]).

Proof (Proof of theorem 1.1). If a �-periodic function W : R
n → R belongs to the space

L∞(Rn), then the inequality

‖Wφ‖ � ‖W‖∞‖φ‖ �
( |γ |

2π

)1/2

‖W‖∞‖L̂1/2(k + ie)φ‖ (11)

is fulfilled for all  > 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K).

By theorem 1.2 and estimate (11), it follows that for a function W ∈ Ln
w(K) and for any ε > 0

(assuming the number 0 > 0 to be sufficiently large) the inequality

‖Wφ‖ � C̃
(
ε2 +

(‖W‖(∞)
n,w

)2)1/2‖L̂1/2(k + ie)φ‖ (12)

holds for all  � 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K).

Denoting W = √|V1| we have W ∈ Ln
w(K) and ‖W‖(∞)

n,w = (‖V1‖(∞)
n/2,w

)1/2
. Hence from (12)

(for all  � 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions ψ, φ ∈ H̃ 1(K)) we get

|(ψ, V1φ)| � C̃2
(
ε2 + ‖V1‖(∞)

n/2,w

)‖L̂1/2(k + ie)ψ‖ · ‖L̂1/2(k + ie)φ‖. (13)

By lemma 1.1, for any ε > 0 there is a sufficiently large number 0 > 0 such that the estimate

|(ψ, (V2 − λ)φ)| � ε2‖V2 − λ‖1,γ ‖L̂1/2(k + ie)ψ‖ · ‖L̂1/2(k + ie)φ‖ (14)

is also valid for all λ ∈ R, all  � 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions

ψ, φ ∈ H̃ 1(K). Now, theorem 1.1 is a direct consequence of theorem 1.3 and estimates (13)

and (14). Furthermore, we can choose any positive number C <

√
C1
2 C̃−1 and put C ′ = C1

2 ,

where C̃ and C1 are constants from theorems 1.2 and 1.3. This completes the proof. �

Remark 4. For the vector γ ∈ �\{0} denote by γ̃ = γ̃ (γ ) the vector of the lattice � such that
γ̃ = tγ, t > 0, and τγ /∈ � for all τ ∈ (0, t). Let M[0,1] be the set of signed Borel measures

7
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defined on Borel subsets of the closed interval [0, 1], and let R
n � x → μ(x; .) ∈ M[0,1] be a

weakly measurable and �-periodic measure-valued function such that

(1)

∫ 1

0
f (ξ + τ)μ(x + τ γ̃ ; dξ) =

∫ 1

0
f (ξ)μ(x; dξ)

for all x ∈ R
n, τ ∈ R and all periodic functions f ∈ C(R) with the period T = 1,

(2) m(μ)
.= ess sup

x∈R
n

∫ 1

0
|μ(x; dξ)| < +∞,

where |μ(x; .)| is the variation of the measure μ(x; .), x ∈ R
n. Introduce the sesquilinear

form

M(ψ, φ) =
∫

K

dx

∫ 1

0
ψ(x − ξ γ̃ )φ(x − ξ γ̃ )μ(x; dξ), ψ, φ ∈ H̃ 1(K). (15)

For any ε > 0, there is a number 0 > 0 such that for all λ ∈ R, all  � 0, all vectors k ∈ R
n

with |(k, γ )| = π , and all functions ψ, φ ∈ H̃ 1(K) (by analogy with inequality (14)) we get

|M(ψ, φ) − λ(ψ, φ)| � ε2C(μ, λ)‖L̂1/2(k + ie)ψ‖ · ‖L̂1/2(k + ie)φ‖, (16)

where C(μ, λ) = m(μ) + |λ|. Consequently, under the conditions of theorem 1.1, instead of
the form (ψ, V2φ) determined by the function V2 we can deal with the form M(ψ, φ), ψ, φ ∈
H̃ 1(K), determined by the periodic measure-valued function R

n � x → μ(x; .). Another
conditions on the form (15), for which inequalities (16) are fulfilled (for all ε > 0 and in the
case where  � 0, |(k, γ )| = π ) with some constants C(μ, λ) > 0, can be found (for n � 3)
in [38].

2. Proof of theorem 1.2

Let Sn−2[] = {x ′ ∈ R
n−1 : |x ′| = },  > 0, n � 3, and let σ

()
n−2 be the (invariant) surface

measure on the sphere Sn−2[]; Sn−2
.= Sn−2[1]. Define the numbers p = p(n) = (2n)/(n+2)

and q = q(n) = (2n)/(n − 2); 1/p + 1/q = 1. For all functions F from the Schwartz space
S(Rn−1), the following Tomas–Stein estimate is valid:

‖F̂‖
L2(Sn−2;dσ

(1)
n−2)

� C‖F‖Lp(Rn−1) (17)

(see [51, 52], and for n = 3 also see [53]), where C = C(n) > 0 and

F̂(k′) = 1

(2π)n−1

∫
R

n−1
F(x ′) e−i(k′,x ′) dx ′, k′ ∈ R

n−1,

denotes the Fourier transform of the function F . Estimate (17) is a key point in the proof of
theorem 1.2.

Let

L(n−1)
a = {k′ ∈ R

n−1 :  − a � |k′| �  + a},  > 0, 0 < a � 3

4
.

For functions u ∈ L2
(
L(n−1)

a

)
, we shall use the notation

ŭ(x ′) =
∫
L(n−1)

a

u(k′) ei(k′,x ′) dk′, x ′ ∈ R
n−1.

We have ŭ ∈ C∞(Rn−1) ∩ Ls(Rn−1) for all s ∈ [2, +∞].

Lemma 2.1. For any function u ∈ L2
(
L(n−1)

a

)
, the estimate

‖ŭ‖Lq(Rn−1) � C1a
1/21/q‖u‖

L2(L(n−1)
a )

holds, where C1 = C1(n) > 0.

8
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Proof. By (17), for all  > 0 and all F ∈ S(Rn−1), we get(∫
Sn−2[]

|F̂ |2 dσ
()
n−2

)1/2

� C1/q‖F‖Lp(Rn−1). (18)

Using (18) one immediately derives(∫
L(n−1)

a

|F |2 dk′
)1/2

=
(∫ +a

−a

d

∫
Sn−2[]

|F̂ |2 dσ
()
n−2

)1/2

� C2a
1/21/q‖F‖Lp(Rn−1),

where C2 = C2(n) > 0. Therefore,∣∣∣∣∫
R

n−1
ŭ(x ′)F(x ′) dx ′

∣∣∣∣ = (2π)n−1

∣∣∣∣∫
L(n−1)

a

uF̂ dk′
∣∣∣∣

� (2π)n−1‖u‖
L2(L(n−1)

a )
‖F̂‖

L2(L(n−1)
a )

� (2π)n−1C2a
1/21/q‖u‖

L2(L(n−1)
a )

‖F‖Lp(Rn−1)

and

‖ŭ‖Lq(Rn−1) = sup
F∈S(Rn−1):‖F‖

Lp(Rn−1)
=1

∣∣∣∣∫
R

n−1
ŭ(x ′)F(x ′) dx ′

∣∣∣∣ � C1a
1/21/q‖u‖

L2(L(n−1)
a )

,

where C1 = (2π)n−1C2. �

Let Ln−1(e) = {x ∈ R
n : (x, e) = 0}. For vectors x ∈ R

n we write x = (x‖, x⊥), where
x‖ = (x, e) ∈ R, x⊥ = x − (x, e)e ∈ Ln−1(e), e = |γ |−1γ . For functions F ∈ S(Rn), let us
define the norms

‖F‖L2
‖L

q

⊥(Rn) =
(∫

R

‖F((x‖, .))‖2
Lq(Ln−1(e)) dx‖

)1/2

,

‖F‖L∞
‖ L

q

⊥(Rn) = ess sup
x‖∈R

‖F((x‖, .))‖Lq(Ln−1(e)).

Denote

K̃a = {k ∈ R
n : | − |k⊥|| � a, |k‖| � a}.

For functions u ∈ L2(K̃a), we shall use the notation

ũ(x‖, k⊥) =
∫

R

u(k) eik‖x‖ dk‖, x‖ ∈ R, k ∈ R
n.

Then

ŭ(x) =
∫

Ln−1(e)

ũ(x‖, k⊥) ei(k⊥,x⊥) dk⊥, x ∈ R
n.

Lemma 2.2. For all functions u ∈ L2(K̃a), the estimate

‖ŭ‖Lq(Rn) � C3a
1/2+1/n1/2−1/n‖u‖L2(K̃a)

is valid, where C3 = C3(n) > 0.

Proof. From lemma 2.1 it follows that

‖ŭ((x‖, .))‖Lq(Ln−1(e)) � C ′
1‖̃u(x‖, .)‖L2(Ln−1(e))

9
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for all x‖ ∈ R, where C ′
1 = C1a

1/21/q . Therefore the following estimates hold:

‖ŭ‖L2
‖L

q

⊥(Rn) =
(∫

R

‖ŭ((x‖, .))‖2
Lq(Ln−1(e)) dx‖

)1/2

� C ′
1

(∫
R

‖̃u(x‖, .)‖2
L2(Ln−1(e)) dx‖

)1/2

= C ′
1

(∫
Ln−1(e)

∫
R

|̃u(x‖, k⊥)|2 dk⊥ dx‖

)1/2

= C ′
1√

2π

(∫
Ln−1(e)

∫
R

|u(k)|2 dk⊥ dk‖

)1/2

= C ′
1√

2π
‖u‖L2(K̃a)

, (19)

‖ŭ‖L∞
‖ L

q

⊥(Rn) = ess sup
x‖∈R

‖ŭ((x‖, .))‖Lq(Ln−1(e)) � C ′
1ess sup

x‖∈R

‖̃u(x‖, .)‖L2(Ln−1(e))

= C ′
1ess sup

x‖∈R

(∫
Ln−1(e)

∣∣∣∣∫ a

−a

u(k) eik‖x‖ dk‖

∣∣∣∣2

dk⊥

)1/2

� C ′
1(2a)1/2

(∫
Ln−1(e)

(∫
R

|u(k)|2 dk‖

)
dk⊥

)1/2

= C ′
1(2a)1/2‖u‖L2(K̃a)

. (20)

Since the inequality

‖f ‖Lq(R) � ‖f ‖2/q

L2(R)
‖f ‖1−2/q

L∞(R)

is valid for all functions f ∈ L2(R) ∩ L∞(R), from (19) and (20) we obtain the estimate

‖ŭ‖Lq(Rn) �
(‖ŭ‖L2

‖L
q

⊥(Rn)

)2/q(‖ŭ‖L∞
‖ L

q

⊥(Rn)

)1−2/q � C3a
1/2+1/n1/2−1/n‖u‖L2(K̃a)

,

where C3 = C3(n) = C121/n(2π)−1/2+1/n. �

For a fixed vector k ∈ R
n

(
and for 0 < a � 3

4
)
, define the sets

Ka = {N ∈ �∗ : k + 2πN ∈ K̃a}.
Let diam K∗ be diameter of the fundamental domain K∗. For any set C ⊆ �∗, let us denote
H(C) = {φ ∈ L2(K) : φN = 0 for N ∈ �∗\C},H(∅) = {0},H(�∗) = L2(K).

Lemma 2.3. Let  � 4π diam K∗ and let π diam K∗ � a � /2. Then for any function
F ∈ H(Ka) the inequality

‖F‖Lq(K) � C4a
1/2+1/n1/2−1/n‖F‖L2(K) (21)

holds, where C4 = C4(n) > 0.

Proof. Denote by L̂ the linear transformation on the space R
n such that L̂Ej = Ej , j =

1, . . . , n (where {Ej } is the fixed orthogonal basis in R
n). Then also (L̂−1)∗E∗

l = El , l =
1, . . . , n, and |det L̂| = v−1(K) = v(K∗) (here {Ej } and {E∗

j } are the bases in the lattices
� and �∗, respectively, (E∗

j , El) = δjl). Let � be the set of functions ω ∈ S(Rn) such that

ω̂ ∈ C∞
0 (Rn), ω̂(̃k) � 0 for all k̃ ∈ R

n, ω̂(̃k) = 0 if |̃kj | � 1
2 for some index j ∈ {1, . . . , n},

and ∫
R

n

ω̂2(̃k) d̃k = (2π)n
∫

R
n

|ω(x)|2 dx = 1.

For functions ω ∈ �, we define the functions �(x) = ω(2π L̂x), x ∈ R
n. One has

�̂(̃k) = v(K)

(2π)n
ω̂

(
1

2π
(L̂−1)∗̃k

)
, k̃ ∈ R

n.

10
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Consequently, ∫
R

n

�̂2(̃k) d̃k = v(K)

(2π)n
(22)

and

�̂(̃k)�̂(̃k − 2πN) ≡ 0, k̃ ∈ R
n, (23)

for all N ∈ �∗\{0}. We write b = π diam K∗. The estimate a + b � 3
4 holds. Since

�̂F (̃k) =
∑
N∈Ka

FN�̂(̃k − 2πN), k̃ ∈ R
n,

the equality �̂F (̃k) = 0 is fulfilled in the case where k̃ − k ∈ R
n\K̃a+b. Hence, by lemma 2.2,

‖�F‖Lq(Rn) � C3a
1/2+1/n1/2−1/n‖�̂F‖L2(k+K̃a+b)

. (24)

Furthermore (see (22), (23)),

‖�̂F‖L2(k+K̃a+b)
=

∫
R

n

∣∣∣∣ ∑
N∈Ka

FN�̂(̃k − 2πN)

∣∣∣∣2

d̃k

=
(∫

R
n

�̂2(̃k) d̃k

) ∑
N∈Ka

|FN |2 = (2π)−n‖F‖L2(K). (25)

On the other hand,

‖�F‖Lq(K) � ‖�F‖Lq(Rn) (26)

and since one can pick an arbitrary function ω ∈ �, it is not hard to obtain the estimate

‖F‖q
.= ‖F‖Lq(K) � C5 sup

ω∈�

‖�F‖Lq(K), (27)

where C5 = C5(n) > 0. Finally, estimate (21) with the constant C4 = C3C5 follows from
(24), (25), (26) and (27). �

Lemma 2.4. Let  � 4π diam K∗ and let π diam K∗ � a � /2. Then for any ε > 0 there is
a constant C(n, ε) > 0 such that for all functions W ∈ Ln

w(K) and φ ∈ H(Ka) the inequality

‖Wφ‖ � C(n, ε)a1/2+1/n1/2−1/n

(


a

)ε

‖W‖n,w‖φ‖ (28)

holds.

Proof. We may assume that ε < min
{

n−2
8 , 1

4

}
. Define the numbers ε1 = 8ε/(n − 2) ∈

(0, 1), ε2 = 4ε ∈ (0, 1), and let φ ∈ H(Ka). For functions V1 ∈ L2(K) and V2 ∈ L∞(K), the
following estimates are valid:

‖V1φ‖ � ‖V1‖2‖φ‖∞ � ‖V1‖2

( ∑
N∈Ka

|φN |
)

� ‖V1‖2

( ∑
N∈Ka

1

)1/2( ∑
N∈Ka

|φN |2
)1/2

� C6a(n−2)/2‖V1‖2‖φ‖, (29)

where C6 = C6(n) > 0, and

‖V2φ‖ � ‖V2‖∞‖φ‖ (30)

(here ‖·‖ = ‖·‖2
.= ‖·‖L2(K)). On the other hand, using lemma 2.3, for functions V ∈ Ln(K),

we derive

‖Vφ‖ � ‖V‖n‖φ‖q � C4a
1/2+1/n1/2−1/n‖V‖n‖φ‖. (31)

11
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Now, pick the numbers n1 ∈ (2, n) and n2 ∈ (n, +∞) such that

1

n1
= ε1

2
+

1 − ε1

n
,

1

n2
= 1 − ε2

n
.

For functions Wj ∈ Lnj (K), j = 1, 2, from estimates (29) and (31) for j = 1, and estimates
(30) and (31) for j = 2, with the help of interpolation (expressing functions Wj as sums of
‘large’ and ‘small’ ones (see, e.g., [54, 55])), we obtain

‖W1φ‖ � 2(C6a(n−2)/2)ε1(C4a
1/2+1/n1/2−1/n)1−ε1‖W1‖n1‖φ‖, (32)

‖W2φ‖ � 2(C4a
1/2+1/n1/2−1/n)1−ε2‖W2‖n2‖φ‖, (33)

respectively. Again applying the interpolation (expressing functions W ∈ Ln
w(K) as sums of

‘large’ functions W1 ∈ Ln1(K) and ‘small’ functions W2 ∈ Ln2(K) (see [54, 55] and also
[56])), from (32) and (33), we derive estimate (28) with some constant C(n, ε) > 0. �

Define the operators

Ĝ±φ = Ĝ±(k + ie)φ =
∑

N∈�∗
G±

N(k + ie)φN e2π i(N,x),

φ ∈ D(Ĝ±) = H̃ 1(K) ⊂ L2(K).

We have L̂ = Ĝ+Ĝ−. Since the vector k ∈ R
n is assumed to satisfy the condition |(k, γ )| = π ,

we get G+
N(k + ie) � G−

N(k + ie) � π |γ |−1 for all  � 0 and all N ∈ �∗. Hence for all
ζ ∈ C, we can also define the operators

Ĝ
ζ
±φ = Ĝ

ζ
±(k + ie)φ =

∑
N∈�∗

(
G±

N(k + ie)
)ζ

φN e2π i(N,x),

φ ∈ D
(
Ĝ

ζ
±
) =

{
H̃ Re ζ (K) if Re ζ > 0,

L2(K) if Re ζ � 0.

Given  � max{8, 4π diam K∗}, we choose the numbers h ∈ [2, 4) and l ∈ N\{1} such
that hl = /2. Let m ∈ N be the smallest number for which hm � π diam K∗ (then m < l).
Denote

K(m) = {N ∈ �∗ : G−
N(k + ie) � hm},

K(j) = {N ∈ �∗ : hj−1 < G−
N(k + ie) � hj }, j = m + 1, . . . , l,

K =
l⋃

j=m

K(j); K ⊆ K/2.

The following estimates are valid:√
π

|γ | ‖φ‖ �
∥∥Ĝ

1/2
− φ

∥∥, φ ∈ H(K(m)), (34)

h(j−1)/2‖φ‖ �
∥∥Ĝ

1/2
− φ

∥∥, φ ∈ H(K(j)), j = m + 1, . . . , l. (35)

For functions φ ∈ H(K), define the functions

φj =
∑

N∈K(j)

φN e2π i(N,x), j = m, . . . , l.

We have φj ∈ H(K(j)), j = m, . . . , l, and φ = ∑l
j=m φj .

12
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Using lemma 2.4 and estimates (34) and (35), for all ε ∈ (
0, 1

n

)
, we deduce that

‖Wφ‖ �
l∑

j=m

‖Wφj‖ � C(n, ε)‖W‖n,w1/2−1/n−ε

l∑
j=m

hj(1/2+1/n−ε)‖φj‖

� C(n, ε)‖W‖n,w1/2−1/n−ε ×
(√

π

|γ |h
m(1/2+1/n−ε)

∥∥Ĝ
1/2
− φm

∥∥
+

l∑
j=m+1

h−j/2+1/2hj(1/2+1/n−ε)
∥∥Ĝ

1/2
− φj

∥∥)

� C(n, ε)‖W‖n,w1/2 ×
(√

π

|γ |h
m(1/2+1/n−ε)−1/n+ε

∥∥Ĝ
1/2
− φm

∥∥
+ 2−1/n+εh1/2

l−m−1∑
j1=0

h−j1(1/n−ε)
∥∥Ĝ

1/2
− φj

∥∥)
. (36)

Now, let ε = 1
2n

. Then (36) implies that there is a number 0 > 0 such that for all  � 0, all
vectors k ∈ R

n with |(k, γ )| = π , and all functions φ ∈ H(K), the inequality

‖Wφ‖ � C̃1‖W‖n,w1/2
∥∥Ĝ

1/2
− φ

∥∥ � C̃1‖W‖n,w‖L̂1/2(k + ie)φ‖ (37)

holds, where C̃1 = C̃1(n) = 4C
(
n, 1

2n

)
(1−2−1/(2n))−1. On the other hand, for all φ ∈ H̃ 1(K)

and all k ∈ R
n, we have

‖Wφ‖ � ‖W‖n,w

(
C̃2

( n∑
j=1

∥∥∥∥(
kj − i

∂

∂xj

)
φ

∥∥∥∥2)1/2

+ C̃3‖φ‖
)

, (38)

where C̃2 = C̃2(n) > 0 and C̃3 = C̃3(n,�) > 0 (see [56] and also [35, 34]). Since
G−

N(k + ie) � 1
3 |k + 2πN | and, consequently, G+

NG−
N � 1

3 |k + 2πN |2 for all N ∈ �∗\K,
from (38) it follows that there exists a number ̃0 > 0 such that for all  � ̃0, all vectors
k ∈ R

n with |(k, γ )| = π , and all functions φ ∈ H̃ 1(K) ∩ H(�∗\K), the inequality

‖Wφ‖ � 2C̃2‖W‖n,w‖L̂1/2(k + ie)φ‖ (39)

is valid. Now, theorem 1.2 directly follows from (37) and (39).

3. Proof of theorem 1.3

Without loss of generality we shall assume that A0 = 0.
LetF be a nonnegative function from the Schwartz spaceS(Rn) such that

∫
R

n F(x) dx = 1
and the Fourier transform F̂ has a compact support; Fr (x) = rnF(rx), r > 0, x ∈ R

n. For
r > 0, we use the notation

A(0)(x) =
∫

R
n

A(x − y)Fr (y) dy, x ∈ R
n.

The function A(0) : R
n → R

n is a trigonometric polynomial with the period lattice � ⊂ R
n,

A
(0)
0 = 0. Furthermore, the function A(0) obeys the condition (A2) of theorem 0.1 and,

moreover,

‖|A(0)|‖2,γ � ‖|A|‖2,γ � a, θ(�, γ, μ, h;A(0)) � θ(�, γ, μ, h;A) � �.

For any ε > 0, taking the number r > 0 to be sufficiently large, we can also suppose that for
the function A(1) .= A − A(0), the estimate

‖|A(1)|‖2,γ � ε‖|A|‖2,γ (40)

13
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holds (see, e.g., [45, 46]). Besides, the condition (A1) is fulfilled for the function A(1) (and
A

(1)
0 = 0).

Since the condition (A1) implies inequalities (4) for the functions A and A(1), we get

W(A; k + ie;ψ, φ) = W(A(0); k + ie;ψ, φ) + 2
n∑

j=1

(
A

(0)
j ψ,A

(1)
j φ

)
−

n∑
j=1

(
A

(1)
j ψ,

(
− i

∂

∂xj

+ kj + iej

)
φ

)

−
n∑

j=1

((
− i

∂

∂xj

+ kj − iej

)
ψ,A

(1)
j φ

)

+
n∑

j=1

(A
(1)
j ψ,A

(1)
j φ), ψ, φ ∈ H̃ 1(K) (41)

for all k ∈ R
n and all  � 0. For any measurable function e∗ : K → Sn−1 and for all  � 0,

all k ∈ R
n, and all φ ∈ H̃ 1(K)∥∥∥∥ n∑

j=1

e∗
j

(
kj − i

∂

∂xj

)
φ

∥∥∥∥2

=
∫

K

∣∣∣∣ n∑
j=1

e∗
j

(
kj − i

∂

∂xj

)
φ

∣∣∣∣2

dx

�
∫

K

n∑
j=1

∣∣∣∣(kj − i
∂

∂xj

)
φ

∣∣∣∣2

dx = v(K)
∑

N∈�∗
|k + 2πN |2|φN |2

� ‖Ĝ+(k + ie)φ‖2. (42)

On the other hand, from lemma 1.1 it follows that for all  � 0, all vectors k ∈ R
n with

|(k, γ )| = π , and all functions φ ∈ H̃ 1(K)

‖|A(1)|φ‖ � C2‖|A(1)|‖2,γ

∥∥∥∥(
k1 − i

∂

∂x1

)
φ

∥∥∥∥ � C2‖|A(1)|‖2,γ ‖Ĝ−(k + ie)φ‖, (43)

where C2 = C2(n, |γ |) > 0. Given φ ∈ H̃ 1(K), let us define the functions

φ(0)(x)
.=

∑
N∈�∗:2π |N |�2

φN e2π i(N,x), φ(1)(x)
.= φ(x) − φ(0)(x), x ∈ R

n.

Since G−
N(k + ie) > 1

3G+
N(k + ie) for all N ∈ �∗ with 2π |N | > 2, from (42) (where we

put e∗(x) = |A(x)|−1A(x) if A(x) �= 0, x ∈ K) and (43) (under the condition |(k, γ )| = π )
we derive∣∣∣∣ n∑

j=1

(
A

(1)
j ψ,

(
kj − i

∂

∂xj

)
φ(1)

)∣∣∣∣ � C2‖|A(1)|‖2,γ ‖Ĝ−ψ‖ · ‖Ĝ+φ
(1)‖

�
√

3C2‖|A(1)|‖2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ(1)‖, ψ, φ ∈ H̃ 1(K). (44)

Lemma 3.1. For all  � 0, all vectors k ∈ R
n with |(k, γ )| = π , and all functions

ψ, φ ∈ H̃ 1(K), the estimates∣∣(A(1)
j ψ, φ)

∣∣ � C2‖|A(1)|‖2,γ

∥∥Ĝ
1/2
− (k + ie)ψ

∥∥ · ‖Ĝ1/2
− (k + ie)φ‖, j = 1, . . . , n, (45)

hold, where C2 = C2(n, |γ |) is the constant from (43).

Proof. For all ζ ∈ C with 0 � Re ζ � 1 (and for fixed  � 0 and k), define the operators

R̂j (ζ ) = Ĝ
−1+ζ
− A

(1)
j Ĝ

−ζ
− , j = 1, . . . , n,

14
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D(R̂j (ζ )) = H̃ 1(K) ⊂ L2(K). From (43) it follows that for all functions ψ, φ ∈ H̃ 1(K), the
functions C � ζ → (ψ, R̂j (ζ )φ) are uniformly bounded for 0 � Re ζ � 1 and analytic for
0 < Re ζ < 1. Furthermore,

|(ψ, R̂j (ζ )φ)| � C2‖|A(1)|‖2,γ ‖ψ‖ · ‖φ‖ (46)

if Re ζ = 0 or Re ζ = 1. Hence estimates (46) hold for all ζ ∈ C with 0 � Re ζ � 1. In
particular, for ζ = 1

2 , inequalities (46) yield the inequalities∥∥(
Ĝ

−1/2
− ψ,A

(1)
j Ĝ

−1/2
− φ

)∥∥ � C2‖|A(1)|‖2,γ ‖ψ‖ · ‖φ‖
which imply inequalities (45) for functions ψ, φ ∈ H̃ 3/2(K). Since the set H̃ 3/2(K) is dense
in the Sobolev class H̃ 1(K), by continuity, estimates (45) are also valid for all functions
ψ, φ ∈ H̃ 1(K). �

By lemma 3.1, it follows that∣∣∣∣ n∑
j=1

(
A

(1)
j ψ,

(
kj − i

∂

∂xj

)
φ(0)

)∣∣∣∣ � C2‖|A(1)|‖2,γ

∥∥Ĝ
1/2
− ψ

∥∥ ·
n∑

j=1

∥∥∥∥Ĝ
1/2
−

(
kj − i

∂

∂xj

)
φ(0)

∥∥∥∥
� 2nC2‖|A(1)|‖2,γ

∥∥Ĝ
1/2
− ψ

∥∥ · ∥∥Ĝ
1/2
− φ(0)

∥∥
� 2nC2‖|A(1)|‖2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ(0)‖.

This inequality and inequality (44) imply that for all  � 0, all vectors k ∈ R
n with

|(k, γ )| = π , and all functions ψ, φ ∈ H̃ 1(K), the following estimate holds:∣∣∣∣ n∑
j=1

(
A

(1)
j ψ,

(
kj − i

∂

∂xj

)
φ

)∣∣∣∣
� (

√
3 + 2n)C2‖|A(1)|‖2,γ ‖L̂1/2(k + ie)ψ‖ · ‖L̂1/2(k + ie)φ‖. (47)

By analogy with lemma 3.1, using (43), we obtain∣∣∣∣ n∑
j=1

(
A

(1)
j ψ, (iej )φ

)∣∣∣∣ =
∣∣∣∣ n∑

j=1

(
(−iej )ψ,A

(1)
j φ

)∣∣∣∣ � C2‖|A(1)|‖2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ‖

(for all functions ψ, φ ∈ H̃ 1(K)). The last inequality and (47) yield∣∣∣∣ n∑
j=1

(
A

(1)
j ψ,

(
− i

∂

∂xj

+ kj + iej

)
φ

)
+

n∑
j=1

((
− i

∂

∂xj

+ kj − iej

)
ψ,A

(1)
j φ

)∣∣∣∣
� 2(1 +

√
3 + 2n)C2‖|A(1)|‖2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ‖. (48)

We also have (see (43))∣∣∣∣ n∑
j=1

(
A

(0)
j ψ,A

(1)
j φ

)∣∣∣∣ � ‖|A(0)|ψ‖ · ‖|A(1)|φ‖

� C2
2‖|A|‖2,γ ‖|A(1)|‖2,γ ‖Ĝ−ψ‖ · ‖Ĝ−φ‖

� C2
2‖|A|‖2,γ ‖|A(1)|‖2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ‖, (49)∣∣∣∣ n∑

j=1

(
A

(1)
j ψ,A

(1)
j φ

)∣∣∣∣ � ‖|A(1)|ψ‖ · ‖|A(1)|φ‖

� C2
2‖|A(1)|‖2

2,γ ‖Ĝ−ψ‖ · ‖Ĝ−φ‖
� C2

2‖|A(1)|‖2
2,γ ‖L̂1/2ψ‖ · ‖L̂1/2φ‖, ψ, φ ∈ H̃ 1(K). (50)
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Since the number ε > 0 can be chosen arbitrarily small in the condition (40), we get from
(41) and (48), (49) and (50) that it suffices to prove theorem 1.3 only for the function A(0).
Indeed, it suffices to assume that the number ε > 0 obeys the condition

2ε(1 +
√

3 + 2n)C2a + ε(ε + 2)C2
2a

2 < 1
2C1

and then replace 1
2C1 by C1. Therefore, in what follows, using the former notation A(0) = A

we shall suppose that the magnetic potential A is a trigonometric polynomial.
Let α̂j , j = 1, . . . , n, be Hermitian M × M-matrices such that

α̂j α̂l + α̂l α̂j = 2δjl ÎM, (51)

where ÎM is the identity M × M-matrix and δjl is the Kronecker delta. Such matrices exist
for M = n+1

2 if n ∈ 2N + 1, and for M = n
2 + 1 if n ∈ 2N. Let

D̂(A; k + ie) =
n∑

j=1

α̂j

(
− i

∂

∂xj

− Aj + kj + iej

)
be the Dirac operator acting on L2(K, C

M) with the domain D(D̂(A; k + ie)) =
H̃ 1(K; C

M), k ∈ R
n,  � 0. We have

D̂2(A; k + ie) = Ĥ (A; k + ie) ⊗ ÎM +
i

2

∑
j �=l

(
∂Al

∂xj

− ∂Aj

∂xl

)
α̂j α̂l,

D(D̂2(A; k + ie)) = D(Ĥ (A; k + ie) ⊗ ÎM) = H̃ 2(K; C
M).

(52)

For all vector functions φ ∈ H̃ 1(K; C
M),

D̂(0; k + ie)φ =
∑

N∈�∗
D̂N(k; )φN e2π i(N,x),

where

D̂N(k; ) =
n∑

j=1

(kj + 2πNj + iej )̂αj , Nj = (N, Ej ), j = 1, . . . , n.

In the following, we shall use the notation Ĝ
ζ

± = Ĝ
ζ

±(k + ie) = Ĝ
ζ
± ⊗ ÎM, ζ ∈ C (and Ĝ±

.=
Ĝ

1
±
)
:

D(Ĝ
ζ

±) =
{

H̃ Re ζ (K; C
M) if Re ζ > 0,

L2(K; C
M) if Re ζ � 0.

Let L̂ = L̂(k + ie) = Ĝ+Ĝ−, then L̂
1/2 = L̂

1/2
(k + ie) = Ĝ

1/2
+ Ĝ

1/2
− .

For all k ∈ R
n, all  � 0, and all N ∈ �∗, the inequalities

G−
N(k; )‖u‖ � ‖D̂N(k; )u‖ � G+

N(k; )‖u‖, u ∈ C
M,

hold. Hence, for all vector functions φ ∈ H̃ 1(K; C
M),

‖Ĝ−φ‖ � ‖D̂(0; k + ie)φ‖ � ‖Ĝ+φ‖.
For vectors ẽ ∈ Sn−2(e), define the orthogonal projections on C

M

P̂ ±
ẽ = 1

2

(̂
I ∓ i

( n∑
j=1

ej α̂j

)( n∑
j=1

ẽj α̂j

))
.

We write ẽ(y)
.= |y⊥|−1y⊥ ∈ Sn−2(e) for vectors y ∈ R

n with y⊥ �= 0.
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If k ∈ R
n,N ∈ �∗, and k⊥ + 2πN⊥ �= 0, then

P̂ ±
ẽ(k+2πN)D̂N(k; )P̂ ±

ẽ(k+2πN) = ÔM (53)

(where ÔM is the zero M × M-matrix) and, for all vectors u ∈ C
M (and all  � 0),∥∥D̂N(k; )P̂ ±

ẽ(k+2πN)u
∥∥ = G±

N(k + ie)
∥∥P̂ ±

ẽ(k+2πN)u
∥∥. (54)

If k⊥ + 2πN⊥ = 0, then G+
N(k + ie) = G−

N(k + ie).
Let K(γ ) be the set of vectors k ∈ R

n such that k⊥ + 2πN⊥ �= 0 for all N ∈ �∗;
Kπ (γ )

.= K(γ ) ∩ {k ∈ R
n : |(k, γ )| = π}.

Given k ∈ K(γ ), denote by P̂ ± = P̂ ±(k; e) the orthogonal projections on L2(K; C
M)

P̂ ±φ =
∑

N∈�∗
P̂ ±

ẽ(k+2πN)φN e2π i(N,x), φ ∈ L2(K; C
M).

Since P̂ + + P̂ − = Î (where Î is the identity operator on L2(K; C
M)), from (53) and (54) it

follows that

‖P̂ ±D̂(0; k + ie)φ‖ = ‖Ĝ∓P̂ ∓φ‖,
‖D̂(0; k + ie)φ‖2 = ‖Ĝ−P̂ −φ‖2 + ‖Ĝ+P̂

+φ‖2, φ ∈ H̃ 1(K; C
M).

Theorem 3.1 (see [46]). Let n � 3, a � 0,� ∈ [0, 1), and R � 0. Suppose
A ∈ L2(K; R

n), A0 = 0 and (for the magnetic potential A) the conditions (A1) and (A2)

are satisfied for a vector γ ∈ �\{0} and a measure μ ∈ Mh, h > 0, and, moreover,
‖|A|‖2,γ � a, θ(�, γ, h, μ;A) � �, and AN = 0 for all vectors N ∈ �∗ with 2π |N⊥| > R.
Then there exists a constant C̃1 = C̃1(n,�, |γ |, h, ‖μ‖; a,�) ∈ (0, 1) such that for every
δ ∈ (0, 1) there is a number ã = ã(C̃1; δ, R) ∈ (0, C̃1] such that for any a ∈ (0, ã], the
estimate

‖(P̂ + + aP̂ −)D̂(A; k + ie)φ‖2 � (1 − δ)‖(C̃1Ĝ−P̂ − + aĜ+P̂
+)φ‖2 (55)

holds for all vectors k ∈ Kπ (γ ), all vector functions φ ∈ H̃ 1(K; C
M), and all sufficiently

large numbers  � 0 > 0 (where 0 depends on the number a but does not depend on k
and φ).

Remark 5. In [46], theorem 3.1 was formulated for the case a = ã. But in the proof of
theorem 3.1, only upper bounds for the number ã were used. Hence, theorem 3.1 is also true
for all a ∈ (0, ã] (nevertheless the number 0 depends on the number a).

Under the conditions of theorem 3.1, instead of the vector γ ∈ �\{0} one can pick
the vector −γ (without change of the basis vectors Ej , j = 1, . . . , n). Then the following
changes are to be made: e → −e, k‖ → −k‖, k⊥ → k⊥, N‖ → −N‖, N⊥ → N⊥ (for all
k ∈ R

n and all N ∈ �∗). Furthermore, the numbers G±
N(k; ), the sets Kπ (γ ), and the vectors

ẽ(k + 2πN) do not change, but the orthogonal projections P̂ + and P̂ − are replaced by the
orthogonal projections P̂ − and P̂ +, respectively. Therefore, for any a ∈ (0, ã] and for all
vectors k ∈ Kπ (γ ), all vector functions φ ∈ H̃ 1(K; C

M), and all sufficiently large numbers
 � 0 > 0 (where 0 does not depend on k and φ), the estimate

‖(P̂ − + aP̂ +)D̂(A; k − ie)φ‖2 � (1 − δ)‖(C̃1Ĝ−P̂ + + aĜ+P̂
−)φ‖2 (56)

is also valid.
For vector functions φ ∈ L2(K; C

M), we deduce from (55) and (56) that∥∥(P̂ + + aP̂ −)D̂(A; k + ie)
(
C̃−1

1 Ĝ
−1
− P̂ − + a−1

Ĝ
−1
+ P̂ +

)
φ
∥∥2 � (1 − δ)‖φ‖2 (57)
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and∥∥(P̂ − + aP̂ +)D̂(A; k − ie)
(
C̃−1

1 Ĝ
−1
− P̂ + + a−1

Ĝ
−1
+ P̂ −)

φ
∥∥2 � (1 − δ)‖φ‖2, (58)

respectively. Since the norm of a bounded linear operator acting on the Hilbert space is equal
to the norm of the adjoint operator, we get from the last estimate that for all φ ∈ H̃ 1(K; C

M)∥∥(
C̃−1

1 Ĝ
−1
− P̂ + + a−1

Ĝ
−1
+ P̂ −)

D̂(A; k + ie)(P̂ − + aP̂ +)φ
∥∥2 � (1 − δ)‖φ‖2. (59)

The following inequality is a direct consequence of (57) and (59):

‖(Ĝ−1
− P̂ + + C̃1a

−1
Ĝ

−1
+ P̂ −)D̂2(A; k + ie)(Ĝ

−1
+ P̂ + + C̃−1

1 aĜ
−1
− P̂ −)φ‖

� C̃1(1 − δ)‖φ‖, φ ∈ H̃ 1(K; C
M). (60)

The inequality (60) plays a key role in the proof of theorem 1.3.
In the following, we assume that δ = 1

6 . By (57) and (58), it follows that
Ker D̂(A; k + ie) = Coker D̂(A; k + ie) = {0}. Hence for the range of the operator
D̂(A; k + ie), we have R(D̂(A; k + ie)) = L2(K; C

M).
Let us denote

B̂(A) = i

2

∑
j �=l

(
∂Al

∂xj

− ∂Aj

∂xl

)
α̂j α̂l .

The estimate∥∥Ĝ
−1
− P̂ +B̂(A)C̃−1

1 aĜ
−1
− P̂ −φ

∥∥
� n(n − 1)

2

|γ |2
π2

C̃−1
1 a

(
max

x∈K,l �=j

∣∣∣∣∂Al

∂xj

∣∣∣∣)‖φ‖, φ ∈ L2(K; C
M),

holds. We choose (and fix) a number a ∈ (0, ã] such that

n(n − 1)

2

|γ |2
π2

C̃−1
1 a

(
max

x∈K,l �=j

∣∣∣∣∂Al

∂xj

∣∣∣∣) � 1

6
C̃1.

Then there is a sufficiently large number 0 > 0 such that for all  � 0, all k ∈ Kπ (γ ), and
all φ ∈ L2(K; C

M)∥∥(
Ĝ

−1
− P̂ + + C̃1a

−1
Ĝ

−1
+ P̂ −)

B̂(A)
(
Ĝ

−1
+ P̂ + + C̃−1

1 aĜ
−1
− P̂ −)

φ
∥∥ � 1

3 C̃1‖φ‖.
Consequently, by (52) and (60), it follows that∥∥(

Ĝ
−1
− P̂ + + C̃1a

−1
Ĝ

−1
+ P̂ −)

(Ĥ (A; k + ie) ⊗ ÎM)
(
Ĝ

−1
+ P̂ + + C̃−1

1 aĜ
−1
− P̂ −)

φ
∥∥

� 1
2 C̃1‖φ‖, φ ∈ H̃ 1(K; C

M). (61)

Since the choice of the matrices α̂j , j = 1, . . . , n, is not specified, we can replace the
matrix α̂1 by the matrix −α̂1 (the commutation relations (51) do not change under such
replacement). Then the orthogonal projections P̂ + and P̂ − substitute each other, and we
obtain from (61) that∥∥(

Ĝ
−1
− P̂ − + C̃1a

−1
Ĝ

−1
+ P̂ +

)
(Ĥ (A; k + ie) ⊗ ÎM)

(
Ĝ

−1
+ P̂ − + C̃−1

1 aĜ
−1
− P̂ +

)
φ
∥∥

� 1
2 C̃1‖φ‖, φ ∈ H̃ 1(K; C

M). (62)

Inequalities (61) and (62) imply that Ker Ĥ (A; k+ie)⊗ÎM = Coker Ĥ (A; k+ie)⊗ÎM =
{0} and R(Ĥ (A; k + ie) ⊗ ÎM) = L2(K; C

M). Hence,

Ker Ĥ (A; k + ie) = Coker Ĥ (A; k + ie) = {0}
(and D(Ĥ (A; k + ie) = H̃ 2(K), R(Ĥ (A; k + ie) = L2(K)).
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Now let us rewrite inequalities (61) and (62) in the form∥∥(Ĝ+P̂
+ + C̃1a

−1
Ĝ−P̂ −)(Ĥ−1(A; k + ie) ⊗ ÎM)

(
Ĝ−P̂ + + C̃−1

1 aĜ+P̂
−)

φ
∥∥

� 2C̃−1
1 ‖φ‖, φ ∈ H̃ 1(K; C

M), (63)∥∥(Ĝ+P̂
− + C̃1a

−1
Ĝ−P̂ +)(Ĥ−1(A; k + ie) ⊗ ÎM)

(
Ĝ−P̂ − + C̃−1

1 aĜ+P̂
+
)
φ
∥∥

� 2C̃−1
1 ‖φ‖, φ ∈ H̃ 1(K; C

M). (64)

For all ζ ∈ C (and for fixed  � 0, k ∈ Kπ (γ ) and a ∈ (0, ã]) define the operators

Q̂(ζ ) = (
Ĝ

1−ζ

+ (C̃1a
−1)ζ Ĝ

ζ

−P̂ + + Ĝ
ζ

+(C̃1a
−1)1−ζ

Ĝ
1−ζ

− P̂ −)
× (Ĥ−1(A; k + ie) ⊗ ÎM)

(
Ĝ

1−ζ

−
(
C̃−1

1 a
)ζ

Ĝ
ζ

+P̂
+ + Ĝ

ζ

−
(
C̃−1

1 a
)1−ζ

Ĝ
1−ζ

+ P̂ −)
,

D(Q̂(ζ )) = H̃ 1(K; C
M) ⊂ L2(K; C

M). For all φ ∈ H̃ 1(K; C
M), the function C � ζ →

Q̂(ζ )φ ∈ L2(K; C
M) is uniformly bounded for 0 � Re ζ � 1 (see (63) and (64)) and analytic

for 0 < Re ζ < 1. If Re ζ = 0 or Re ζ = 1, then (63) and (64) imply that

‖Q̂(ζ )φ‖ � 2C̃−1
1 ‖φ‖. (65)

Therefore estimate (65) is true for all ζ ∈ C with 0 � Re ζ � 1. In particular, for ζ = 1
2 , we

have

‖L̂
1/2

(Ĥ−1(A; k + ie) ⊗ ÎM)L̂
1/2

φ‖ � 2C̃−1
1 ‖φ‖, φ ∈ H̃ 1(K; C

M),

and hence for all  � 0, all k ∈ Kπ (γ ), and all φ ∈ H̃ 1(K)

‖L̂1/2Ĥ−1(A; k + ie)L̂1/2φ‖ � 2C̃−1
1 ‖φ‖.

Whence

‖L̂−1/2Ĥ (A; k + ie)L̂−1/2φ‖ � 1
2 C̃1‖φ‖, φ ∈ H̃ 1(K). (66)

By continuity, the last estimate extends to all vectors k ∈ R
n with |(k, γ )| = π . Finally,

let C1 = 1
2 C̃1. Then estimate (10) follows from (66) for all  � 0, all vectors k ∈ R

n

with |(k, γ )| = π , and all functions φ ∈ H̃ 2(K). Since the set H̃ 2(K) is dense in H̃ 1(K)

and the form W(A; k + ie;ψ, φ) is continuous in functions ψ and φ from the Sobolev class
H̃ 1(K), estimate (10) is also valid for all functions φ ∈ H̃ 1(K). This completes the proof of
theorem 1.3.
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